Las Leyes de Morgan son una parte de la Lógica preposicional, analítica, y fueron creadas por Augustus de Morgan. Estas declaran las reglas de equivalencia en las que se muestran que dos proposiciones pueden ser lógicamente equivalentes.
Lo que expresan estas leyes es que, ya sea en la negación de la conjunción o de la disyunción, el resultado es equivalente a negar por separado a cada una de las proposiciones participantes e invertir el conector que las vincula.
Casos:
¬(P ^ Q) ≡ (¬P v ¬Q) Si nos encontramos con una proposición conjuntiva totalmente negada, la ley de Morgan nos permite transformarla en una proposición disyuntiva con cada uno de sus miembros negados
¬(P v Q) ≡ (¬P ^ ¬Q) Si nos encontramos con una proposición disyuntiva totalmente negada, la ley de Morgan nos permite transformarla en una proposición conjuntiva con cada uno de sus miembros negados
(P ^ Q) ≡ ¬ (¬ P v ¬ Q) Si nos encontramos con una proposición conjuntiva afirmada, la ley de Morgan nos permite transformarla en una proposición disyuntiva negada en su totalidad y en sus miembros.
(P v Q) ≡ ¬(¬P ^ ¬Q) Si nos encontramos con una proposición disyuntiva afirmada, la ley de Morgan nos permite transformarla en una proposición conjuntiva negada en su totalidad y en sus miembros
Comentarios
Publicar un comentario